Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 942, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296943

RESUMEN

Lentic systems (lakes and reservoirs) are emission hotpots of nitrous oxide (N2O), a potent greenhouse gas; however, this has not been well quantified yet. Here we examine how multiple environmental forcings have affected N2O emissions from global lentic systems since the pre-industrial period. Our results show that global lentic systems emitted 64.6 ± 12.1 Gg N2O-N yr-1 in the 2010s, increased by 126% since the 1850s. The significance of small lentic systems on mitigating N2O emissions is highlighted due to their substantial emission rates and response to terrestrial environmental changes. Incorporated with riverine emissions, this study indicates that N2O emissions from global inland waters in the 2010s was 319.6 ± 58.2 Gg N yr-1. This suggests a global emission factor of 0.051% for inland water N2O emissions relative to agricultural nitrogen applications and provides the country-level emission factors (ranging from 0 to 0.341%) for improving the methodology for national greenhouse gas emission inventories.

2.
Nature ; 613(7944): 449-459, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653564

RESUMEN

River networks represent the largest biogeochemical nexus between the continents, ocean and atmosphere. Our current understanding of the role of rivers in the global carbon cycle remains limited, which makes it difficult to predict how global change may alter the timing and spatial distribution of riverine carbon sequestration and greenhouse gas emissions. Here we review the state of river ecosystem metabolism research and synthesize the current best available estimates of river ecosystem metabolism. We quantify the organic and inorganic carbon flux from land to global rivers and show that their net ecosystem production and carbon dioxide emissions shift the organic to inorganic carbon balance en route from land to the coastal ocean. Furthermore, we discuss how global change may affect river ecosystem metabolism and related carbon fluxes and identify research directions that can help to develop better predictions of the effects of global change on riverine ecosystem processes. We argue that a global river observing system will play a key role in understanding river networks and their future evolution in the context of the global carbon budget.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono , Ecosistema , Ríos , Dióxido de Carbono/análisis , Secuestro de Carbono , Gases de Efecto Invernadero/análisis
3.
PLoS One ; 16(3): e0247907, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33760812

RESUMEN

There is a growing understanding of the role that bedrock weathering can play as a source of nitrogen (N) to soils, groundwater and river systems. The significance is particularly apparent in mountainous environments where weathering fluxes can be large. However, our understanding of the relative contributions of rock-derived, or geogenic, N to the total N supply of mountainous watersheds remains poorly understood. In this study, we develop the High-Altitude Nitrogen Suite of Models (HAN-SoMo), a watershed-scale ensemble of process-based models to quantify the relative sources, transformations, and sinks of geogenic and atmospheric N through a mountain watershed. Our study is based in the East River Watershed (ERW) in the Upper Colorado River Basin. The East River is a near-pristine headwater watershed underlain primarily by an N-rich Mancos Shale bedrock, enabling the timing and magnitude of geogenic and atmospheric contributions to watershed scale dissolved N-exports to be quantified. Several calibration scenarios were developed to explore equifinality using >1600 N concentration measurements from streams, groundwater, and vadose zone samples collected over the course of four years across the watershed. When accounting for recycling of N through plant litter turnover, rock weathering accounts for approximately 12% of the annual dissolved N sources to the watershed in the most probable calibration scenario (0-31% in other scenarios), and 21% (0-44% in other scenarios) when considering only "new" N sources (i.e. geogenic and atmospheric). On an annual scale, instream dissolved N elimination, plant turnover (including cattle grazing) and atmospheric deposition are the most important controls on N cycling.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Colorado
4.
Nature ; 586(7828): 248-256, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33028999

RESUMEN

Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum-maximum estimates: 12.2-23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9-17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2-11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies-particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O-climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.


Asunto(s)
Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Agricultura , Atmósfera/química , Productos Agrícolas/metabolismo , Actividades Humanas , Internacionalidad , Nitrógeno/análisis , Nitrógeno/metabolismo
5.
Glob Chang Biol ; 25(2): 473-488, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30372799

RESUMEN

Nitrous oxide (N2 O) emissions from inland waters remain a major source of uncertainty in global greenhouse gas budgets. N2 O emissions are typically estimated using emission factors (EFs), defined as the proportion of the terrestrial nitrogen (N) load to a water body that is emitted as N2 O to the atmosphere. The Intergovernmental Panel on Climate Change (IPCC) has proposed EFs of 0.25% and 0.75%, though studies have suggested that both these values are either too high or too low. In this work, we develop a mechanistic modeling approach to explicitly predict N2 O production and emissions via nitrification and denitrification in rivers, reservoirs and estuaries. In particular, we introduce a water residence time dependence, which kinetically limits the extent of denitrification and nitrification in water bodies. We revise existing spatially explicit estimates of N loads to inland waters to predict both lumped watershed and half-degree grid cell emissions and EFs worldwide, as well as the proportions of these emissions that originate from denitrification and nitrification. We estimate global inland water N2 O emissions of 10.6-19.8 Gmol N year-1 (148-277 Gg N year-1 ), with reservoirs producing most N2 O per unit area. Our results indicate that IPCC EFs are likely overestimated by up to an order of magnitude, and that achieving the magnitude of the IPCC's EFs is kinetically improbable in most river systems. Denitrification represents the major pathway of N2 O production in river systems, whereas nitrification dominates production in reservoirs and estuaries.


Asunto(s)
Cambio Climático , Agua Dulce/química , Gases de Efecto Invernadero/análisis , Óxido Nitroso/análisis , Modelos Teóricos
6.
Sci Total Environ ; 622-623: 814-824, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29223908

RESUMEN

Groundwater discharge can be a major source of nutrients to river systems. Although quantification of groundwater nitrate loading to streams is common, the dependence of surface water silicon (Si) and phosphorus (P) concentrations on groundwater sources has rarely been determined. Additionally, the ability of groundwater discharge to drive surface water Si:P ratios has not been contextualized relative to riverine inputs or in-stream transformations. In this study, we quantify the seasonal dynamics of Si and P cycles in the Grand River (GR) watershed, the largest Canadian watershed draining into Lake Erie, to test our hypothesis that regions of Si-rich groundwater discharge increase surface water Si:P ratios. Historically, both the GR and Lake Erie have been considered stoichiometrically P-limited, where the molar Si:P ratio is greater than the ~16:1 phytoplankton uptake ratio. However, recent trends suggest that eastern Lake Erie may be approaching Si-limitation. We sampled groundwater and surface water for dissolved and reactive particulate Si as well as total dissolved P for 12months within and downstream of a 50-km reach of high groundwater discharge. Our results indicate that groundwater Si:P ratios are lower than the corresponding surface water and that groundwater is a significant source of bioavailable P to surface water. Despite these observations, the watershed remains P-limited for the majority of the year, with localized periods of Si-limitation. We further find that groundwater Si:P ratios are a relatively minor driver of surface water Si:P, but that the magnitude of Si and P loads from groundwater represent a large proportion of the overall fluxes to Lake Erie.

7.
Nat Commun ; 8: 15347, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28513580

RESUMEN

The damming of rivers represents one of the most far-reaching human modifications of the flows of water and associated matter from land to sea. Dam reservoirs are hotspots of sediment accumulation, primary productivity (P) and carbon mineralization (R) along the river continuum. Here we show that for the period 1970-2030, global carbon mineralization in reservoirs exceeds carbon fixation (P

8.
Proc Natl Acad Sci U S A ; 112(51): 15603-8, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644553

RESUMEN

More than 70,000 large dams have been built worldwide. With growing water stress and demand for energy, this number will continue to increase in the foreseeable future. Damming greatly modifies the ecological functioning of river systems. In particular, dam reservoirs sequester nutrient elements and, hence, reduce downstream transfer of nutrients to floodplains, lakes, wetlands, and coastal marine environments. Here, we quantify the global impact of dams on the riverine fluxes and speciation of the limiting nutrient phosphorus (P), using a mechanistic modeling approach that accounts for the in-reservoir biogeochemical transformations of P. According to the model calculations, the mass of total P (TP) trapped in reservoirs nearly doubled between 1970 and 2000, reaching 42 Gmol y(-1), or 12% of the global river TP load in 2000. Because of the current surge in dam building, we project that by 2030, about 17% of the global river TP load will be sequestered in reservoir sediments. The largest projected increases in TP and reactive P (RP) retention by damming will take place in Asia and South America, especially in the Yangtze, Mekong, and Amazon drainage basins. Despite the large P retention capacity of reservoirs, the export of RP from watersheds will continue to grow unless additional measures are taken to curb anthropogenic P emissions.


Asunto(s)
Fósforo/análisis , Ríos/química , Eutrofización , Método de Montecarlo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...